
(Preprint) AAS 17-776

MCOLL: MONTE COLLOCATION TRAJECTORY DESIGN TOOL

Daniel J. Grebow∗ and Thomas A. Pavlak∗

In this paper we describe a prototype low-thrust optimization software being de-
veloped at JPL. The software tool is based on a collocation algorithm where a
trajectory discretization is fitted and adjusted until the underlying dynamics equa-
tions of motion are satisfied. The resulting large scale non-linear programming
problem may either be optimized with IPOPT or KNITRO. The user specifies path
constraints, boundary constraints, and objectives. We describe the collocation al-
gorithm as well as various mesh refinement strategies, and apply the software tool
to solve various example problems.

INTRODUCTION

This paper details our progress in developing a prototype trajectory design software tool that
has resulted from a multi-year research and development effort at JPL. The tool, called MColl
(MONTE Collocation), relies on a collocation algorithm for integrating trajectories while leverag-
ing JPL’s high-fidelity Mission Design & Navigation Software MONTE (Mission-design and Oper-
ations Navigation Toolkit Environment).1 The goal for this software is to enable rudimentary capa-
bility of low-thrust trajectory optimization within MONTE. Currently MColl can compute complex
ballistic trajectories, as well as optimize high-fidelity low-thrust trajectories, where the propulsive
force could either be a solar-electric propulsion (SEP) system or a solar sail. User-defined path
constraints, boundary constraints, and objectives may also be specified.

The underlying alorithm in MColl is collocation. Basic to all collocation schemes is a discretiza-
tion of a trajectory approximation defining nodes of polynomials. At every node, or collocation
point, the derivatives of the polynomials are forced to match the governing system differential equa-
tions. After the collocation problem is solved, the segment boundary times of the polynomials
and/or the degree needs to be adjusted. Possibly segments need to be added or subtracted to meet a
user-specified tolerance. This process is called mesh-refinement.

Collocation algorithms have recently received significant attention due to their ability to solve dif-
ficult problems in engineering and mathematics. The benefits of collocation strategies are numerous,
but perhaps the most significant advantage is the wide radius of convergence these methods enjoy.
The software packages COLSYS,2 COLDAE,3 AUTO,4, 5 OTIS,6, 7 DIDO,8 DIRCOL,9 PROPT,10

and GPOPS-II11 all rely on collocation in some capacity. In the literature, collocation strategies
differ in (i) the number of segments (one, a few, or many), (ii) the degree of the interpolating poly-
nomial, and (iii) the placement of nodes. There are also differences in the polynomial bases selected
for defining the polynomial(s), affecting only the behavior of convergence of the method (but not
the final conveged solution).

∗Mission Design Engineer, Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of
Technology, 4800 Oak Grove Dr., Pasadena, CA 91109.

1

The first year of this research and development effort was spent surveying the literature on the
topics of collocation and mesh refinement, and comparing the performance of various methods.
The important historical contributions to this rich area of research are summarized in sections of
the paper below. A generalized collocation algorithm is also provided. The algorithm selected for
MColl is an arbitrary, odd-degree, multi-segment strategy with nodes specified at Legendre-Gauss-
Lobatto (LGL) points. The derivatives of the collocation constraints are computed using MONTE’s
automatic differentiation capability. Of the various mesh refinement options investigated, ultimately,
three were selected for implementation, including a method that controls error with JPL’s standard
propagator DIVA.12 The current version of MColl allows optimization with IPOPT13 or KNITRO,14

as specified by the user. In this paper we justify our selection of the algorithms that we selected
for implementation and present them in greater detail while highlighting our own contributions.
The paper closes with several example problems and comparisons to JPL low-thrust optimization
software MALTO15 or Mystic,16, 17 when possible.

COLLOCATION

Collocation is a numerical method that enables computation of solutions to ordinary differential
equations by fitting piecewise continuous polynomials to a discretization of a trajectory. This idea
was perhaps first introduced by de Boor18 in 1966 for solving boundary value problems (BVPs) for
linear differential equations, and later extended by Russell and Shampine19 to apply more generally
to ordinary differential equations. In a 1974 paper, Weiss20 showed that collocation is equivalent
to implicit Runge-Kutta schemes. Both COLSYS2 (1979) and AUTO4 were developed for solving
BVPs. AUTO5 is well-known and widely used today.

Historically, optimal control problems are transformed into BVPs using the calculus of varia-
tions. Therefore collocation naturally lends to solving problems with control. In the mid-1980s,
Hargraves and Paris21 showed how the optimal control problem can be solved straightforwardly
with collocation by casting it as a nonlinear programming (NLP) problem and directly minimiz-
ing some objective using sequential quadratic programming. This approach is significantly easier
than indirect approaches because it does not require an initial guess for costates (which are often
non-intuitive), nor does it involve deriving complicated boundary conditions that are problem spe-
cific. There is less numerical sensitivity on the initial guess and path constraints are straightforward
to apply, both challenges for indirect methods based on shooting. Because of the sparsity pattern
of the Jacobian, Hargraves and Paris leveraged powerful third party optimizers to solve the NLP
efficiently. Their software package Optimal Trajectories by Implicit Simulation (OTIS6) was first
distributed in 1988. In 2008 OTIS won NASA’s Software of the Year Award and it is presently
maintained by the Glenn Research Center.22

Collocation methods continued to gain traction in the astrodyanmics community in the 1990s.
Betts and Huffman23, 24 published papers on this topic and together they created of Sparse Optimal
Control Software (SOCS25). Enright and Conway26 showed how piecewise continuous polynomials
can be used to fit a discretization where the derivatives are forced to match the vector field at LGL
points. This method has been extended to degree seven by Herman27 and Herman and Conway,28

and later generalized to any degree by Williams.29 During this time the processes of solving the
NLP problem with optimal control using collocation became widely known as direct transcription.
Enright and Conway26 attribute the phrase’s first use to Canon.30

More recently, so-called pseudospectral methods have received attention. Spectral methods find
their origins in solving partial differential equations, particularly complex fluid dynamics problems,

2

because they outperform both finite differencing and finite element methods. Historically these
methods rely on one or a several high-degree polynomials to approximate the dynamics, rather than
many piecewise-continuous polynomials. Fahroo and Ross31, 32 describe a pseudospectral method
where nodes are located at Chebyshev-Gauss-Lobatto (CGL) points. More recently Ross has de-
veloped the software DIDO8 for solving astrodynamics problems with optimal control using pseu-
dospectral collocation. Research continues for pseudospectral methods where currently Legendre-
Gauss-Radau (LGR) points or Legendre-Gauss (LG) points are favored.33 The software DIRCOL,9

PROPT,10 and GPOPS-II11 all utilize pseudospectral collocation in some capacity.

We refer the reader to the following resourceful survey papers: Betts,34 Conway,35 and Topputo
and Zang.36 For more information on direct transcription, see Betts37 and Conway.38

Collocation Schemes

Perhaps the simplest collocation approach is the 1st order Euler method in which the solution is
approximated by a series of N − 1 linear segments where N is the number of discretized nodes
along the trajectory. In this approach, the solution is governed by the well-known Euler integration
rule

xi+1 = xi + ∆tif [ti,xi] (1)

where xi denotes the ith discrete state along the trajectory, ∆ti represents the time step along the ith

segment, i.e., ti+1−ti, and f [ti,xi] is the vector field evaluation at point xi(ti). Thus, the “slope” of
each segment is based on the vector field at the current point, xi. Continuity in position and velocity
is enforced between adjacent trajectory segments via a series of N − 1 defect constraints, ∆i, given
by

∆i = xi − xi+1 + ∆tif [ti,xi] = 0 (2)

The Euler collocation constraint, Equation 2, is equivalent to a forward finite differencing scheme.

The trapezoidal collocation method is similar to the Euler approach in that both algorithms use a
series of linear trajectory segments. However, the trapezoidal method achieves 2nd order accuracy
by approximating the solution via the trapezoidal integration rule, yielding defect constraints of the
form

∆i = xi − xi+1 +
∆ti
2
{f [ti,xi] + f [ti+1,xi+1]} = 0 (3)

Higher-order collocation rules are achieved by increasing the degree of the interpolating polynomial.
In each Gauss-Lobatto collocation formulation, there are n total state and defect points associated
with each nth degree polynomial. For each segment, the times associated with the nodes are nor-
malized on the interval [−1, 1] and are placed via Gauss-Lobatto integration rules. The 3rd degree
method with 4th order of accuracy represents each segment of the discretized trajectory as a Her-
mite cubic polynomial. The ODE solution is approximated via Simpson’s rule which is a 3rd degree
Gauss-Lobatto integration method. Thus, the 3rd degree Gauss-Lobatto collocation approach is of-
ten called the Hermite-Simpson method. The polynomial is constructed from state and derivative
information at the endpoints of each trajectory segment and the defects are computed at the midpoint
of each trajectory segment, that is,

∆i = xi − xi+1 +
∆ti
6
{f [ti,xi] + f [tc,xc] + f [ti+1,xi+1]} = 0 (4)

where the midpoint state, xc, is interpolated from the polynomial by the expression

xc =
1

2
(xi − xi+1) +

∆ti
8
{f [ti,xi]− f [ti+1,xi+1]} = 0 (5)

3

The 5th and 7th degree Gauss-Lobatto collocation methods (of order 8 and 12, respectively) are
higher-order analogues of the Hermite-Simpson rule. The defect constraints for these methods are
detailed by Herman and Conway.27, 28

A Generalized Algorithm

For the generalized method presented here, a polynomial segment pi is defined as an nth degree
polynomial of the following matrix form

pi(τ) = Ci ×
[

1 τ τ2 . . . τn
]T (6)

where, for numerical reasons and simplicity, the time domain τ for all segments spans the interval
[−1, 1]. Note that if there are l state variables, the polynomial pi is an l-dimensional vector, and the
matrix of coefficients Ci is of dimension l × (n+ 1).

The points where states are collocated are selected corresponding to the roots of a particular
representation of Legendre polynomials Pn(τ) . Generally the following types of node placement
are considered in the literature (although some methods use roots of Chebyshev polynomials, this
is less common):

Legendre-Gauss-Lobatto (LGL) points are collocated at −1 and 1 and at the roots of Ṗn−1(τ).

Legendre-Gauss-Radau (LGR) points are collocated at the roots of Pn−1(τ) + Pn(τ).

Legendre-Gauss-Radau reversed (LGRr) points are the same as LGR but with opposite sign.

Legendre-Gauss (LG) points are collocated at the roots of Pn−1(τ).

See Figure 1 for a comparison of the node placement strategies for 5th degree methods. For this
approach, we assume that each segment polynomial is uniquely determined by the states and deriva-
tives at the variable nodes, or the odd nodes in Figure 1. The state and derivatives at the constrained
nodes are computed from the segment polynomials, evaluated at the even nodes. Therefore the
degree of the polynomial is equal to the total number of nodes desired per segment.

The order of accuracy depends on which type of node placement is selected. LGL has an order of
accuracy 2n−2, while LGR(r) and LG methods have orders of accuracy 2n−1 and 2n, respectively.
Although LG is a higher-order method, LG nodes do not include the endpoints −1 and 1, making
them slightly more complicated to join segments, or to enforce boundary condition constraints.
LGR(r) has a node at only one endpoint and is, therefore, slightly less complicated than LG. (Note
also that the nodes for LGR(r) are collocated asymmetrically about 0.) In Figure 1(a), if x1,5 = x2,1,
it becomes apparent that across two segments, for LG points there are 10 nodes, whereas for LGL
there are only 9 (even though the degree of the polynomial is the same). This is why the order of
accuracy is higher for LG methods. In general, however, an arbitrary accuracy can be achieved with
any node placement strategy by adjusting the degree of the polynomial and/or number of segments.

Depending on the strategy selected for the node locations (LGL, LGR(r), or LG), all methods
enforce the following constraints at every node j of every segment i = 1, . . . ,m

pi,j = xi,j
ṗi,j = ẋi,j

j = 1, . . . , n (7)

where pi,j = pi(τj), ṗi,j = dpi(τj)/dτ , and τj is the node time somewhere on the interval [−1, 1].
The term ẋi,j is given by the RHS of the ODEs, i.e.,

ẋi,j =
∆ti
2

f [τj ,xi,j] (8)

4

x1,3

Variable
Nodes

Constrained Nodes

x1,1
p1(𝜏2) p1(𝜏2)

x1,5

x2,3

Variable
Nodes

Constrained Nodes

x2,1
p2(𝜏2) p2(𝜏2)

x2,5

(a) Legendre-Gauss-Lobatto (LGL)

p1(𝜏4)

x1,1 p1(1)
p1(𝜏2)

x1,3
x1,5

Variable
Nodes

Constrained Nodes

Variable
Nodes

Constrained Nodes

p2(1)

p2(𝜏4)
p2(𝜏2) x2,3

x2,5
x2,1

(b) Legendre-Gauss-Radau (LGR)

x1,3

Variable
Nodes

Constrained Nodes

p1(-1) p1(1)
x1,1

p1(𝜏2)

Variable
Nodes

Constrained Nodes

p2(-1) p2(1)
x1,5

p1(𝜏2)

x2,3
x2,1

p2(𝜏2)
x2,5

p2(𝜏2)

(c) Legendre-Gauss (LG)

Figure 1. Comparison of Collocation Node Placement Strategies

5

We can substitute Equations 6 and 8 into 7 and express the system constraints in matrix form as

Ci ×
[
τ τ̇

]
=
[

xi,1 xi,2 . . . xi,n ẋi,1 ẋi,2 . . . ẋi,n
]

(9)

where

τ =

1 1 1
τ1 τ2 τn
τ21 τ22 . . . τ2n
...

...
...

τn1 τn2 τnn

 , τ̇ =

0 0 0
1 1 1

2τ1 2τ2 . . . 2τn
...

...
...

nτn−1
1 nτn−1

2 nτn−1
n

 (10)

As posed, the system of Equations 9 represents 2ln constraints with 2ln + l unknowns: all the
coefficients Ci and each node state xi,j . Typically the coefficients Ci are eliminated as variables
by assuming some basis for the polynomials, such as Lagrange interpolation, B-splines, Chebyshev
polynomials, etc. The collocation problem is solved when Equations 9 is satisfied. Here we will
eliminate the coefficients Ci by assuming that the polynomials satisfy state and derivative informa-
tion at the odd nodes. If an even number of nodes is desired, then the state at the final node may
also be used when to construct the polynomial.

For an odd number of nodes, we introduce the constant matrix A as follows

A =

1 1 1 0 0 0
τ1 τ3 τn 1 1 1
τ21 τ23 . . . τ2n 2τ1 2τ3 . . . 2τn
...

...
...

...
...

...
τn1 τn3 τnn nτn−1

1 nτn−1
2 . . . nτn−1

n

 (11)

The matrix A is square and nonsingular. (Note that all subscripts in the previous equation should
be odd.) Then the coefficients Ci for each segment are uniquely determined from

Ci =
[

xi,1 xi,2 . . . xi,n ẋi,1 ẋi,2 . . . ẋi,n
]
×A−1 (12)

Now that Ci is fully determined, we can compute the polynomial time derivatives at the even nodes.
To do so, we introduce the following matrices B and D which allow us to interpolate the polyno-
mials at any given time τ (notice that the matrix D corresponds to the time derivative of B)

B =

1 1 1 1 1
−1 τ2 τ4 τn−1 1
1 τ22 τ24 . . . τ2n−1 1
...

...
...

...
...

−1 τn2 τn4 τnn−1 1

 , D =

0 0 0
1 1 1

2τ2 2τ4 . . . 2τn−1
...

...
...

nτn−1
2 nτn−1

4 nτn−1
n−1

 (13)

Since states at the even nodes are variables, it is unnecessary to include them as variables in the
NLP problem. Instead, their values are interpolated directly from the polynomial representations:[

xi,0 xi,2 xi,4 . . . xi,n−1 xi,f
]

= Ci ×B (14)

We have included the initial and final states on the segment when constructing the matrix B so
that the initial and final state from the polynomial interpolation are on-hand if they are needed

6

for additional constraints, such as segment continuity constraints. The subscript ‘0’ refers to the
segment initial state and ‘f ’ corresponds to the final state. For LGL points, the segment initial and
final states are collocation points, whereas for LG points, these quantities must be interpolated from
the polynomial representations. Once the values of the states at the even nodes are determined, then
the constraints are given by

∆i =
[
Ci ×D−

[
xi,2 xi,4 . . . xi,n−1

]]
×W = 0 (15)

The matrix W is a diagonal matrix that contains the quadrature weights for the even nodes as
determined by the node placement strategy (e.g., LGL, LGR(r), or LG).39 The matrices A−1, B,
and D are all constants and can be pre-computed and stored in memory.

For an even number of nodes, the process is similar but state information at the final node must
also be included when constructing the polynomial. Therefore, for an even number of nodes, there
is an extra column in the matrices A, B, and D corresponding to the time τn.

Suppose we want to solve an inital value problem with m segments using an odd nth degree
polynomial. Then, the NLP variables are given by the matrix

X =

x1,1 x1,3 . . . x1,n

x2,1 x2,3 . . . x2,n
...

...
. . .

xm,1 xm,3 . . . xm,n

 (16)

and the constraints are

F =

x1,0 − x0,des

x2,0 − x1,f
...

xm,0 − xm−1,f

∆1

∆2
...

∆m

= 0 (17)

where the initial state is x0,des. This NLP has lmn variables and lmn constraints. Recall from Fig-
ure 1 that for LGL points there are no diamonds at the segment boudaries; therefore the boundaries
between the segments may initially assumed to be equal, yielding a problem with l(m − 1) fewer
variables and constraints. We call this the “simplified LGL” method because xi,n is not included
as variables in X for the first m − 1 segments, and, furthermore, it does not require the l(m − 1)
segment continuity constraints in the top partition of F.

MESH REFINEMENT

After the collocation problem is solved, the segment boundary times need to be adjusted and
segments may need to be added or subtracted to meet a user-specified tolerance. This process is
called mesh refinement, and it is equivalent in principle to allowing for adaptive step-size in explicit
propagation schemes. Thus, mesh refinement is an essential part of the computational process for
collocation.

7

There are various approaches for mesh refinement, many of which are described by Russell and
Christiansen.40 (See also Betts and Huffman.23) The software AUTO relies on the mesh refinement
algorithms presented in Russell and Christiansen’s paper. Most of these strategies first work to
equally distribute the error across all segments. Once the error is sufficiently equally distributed,
the number of segments is updated. Some researchers41 have suggested meeting error tolerances by
adjusting the degree of the polynomial for a given segment instead of adjusting the segment size.
Another possibility is to use a Sundman transformation.42 The Sundman transformation describes
the change in time with respect to a new independent time variable that, when integrated along with
the system differential equation, equally distributes error. There are some Sundman transformations
that are known to work well for particular EOMs, however the strategy is not easily generalized
to any set of dynamical equations. Another option that has been utilized with some success in
engineering circles is to control the error with an explicit propagator after solving the NLP. (For
example, see Dickmans43 and Hargraves and Paris.21) If the error exceeds a user-specified value for
a segment, then the segment is split into two segments. Once every segment has been adjusted in
this way, the NLP is re-solved.

Mesh Refinement Strategies

Suppose we have solved the collocation problem with nth degree polynomials using the following
mesh:

Π : t1 < t2 < . . . < tm < tm+1 (18)

Recall that m is the number of segments and n is the degree of the polynomial. Since Π is initially
a guess, often there is wildly varying error over the initial mesh.

Method from de Boor. Carl de Boor’s method44 has been used for mesh refinement both by Rus-
sell and Christiansen40 and Ozimek et al.45 Initially the times in Equation 18 are adjusted to equally
distribute error across each segment while keeping the number of segments fixed. The error is
usually expressed as an expansion of ∆ti = ti+1 − ti:

ei = C∆ti
n+1ξi +O(∆tn+2

i) (19)

where C is a computable constant that depends on the degree of the polynomial (see Appendix of
Russell and Christiansen40). According to de Boor, ξi can be estimated as the nth + 1 derivative of
the solution. This derivative is approximated with the polynomials of the converged solution and
the following differencing scheme:

ξ ≈

2max

∣∣∣p(n)

1 − p(n)
2

∣∣∣
∆t1 + ∆t2

 , on (t1, t2)

max

∣∣∣p(n)
i−1 − p(n)

i

∣∣∣
∆ti−1 + ∆ti

+ max

∣∣∣p(n)
i+1 − p(n)

i

∣∣∣
∆ti+1 + ∆ti

 , on (ti, ti+1) i = 2, . . . ,m− 1

2max

∣∣∣p(n)
m+1 − p(n)

m

∣∣∣
∆tm+1 + ∆tm

 , on (tm, tm+1)

(20)

where p(n)
i is the nth derivative with respect to the non-normalized time of the polynomials for

segment i. The new segment boundary times can be updated to asymptotically equally distribute

8

the error across each segment. The new times are

ti+1 = I−1

[
iI(tm+1)

m

]
, i = 1, . . . ,m− 1 (21)

where

I(t) =

∫ t

t1

ξ(s)
1

n+1ds (22)

Since ξi is piecewise constant, Equations 21 and 22 are trivial to compute, since the integral can
be solved exactly with the rectangle rule. Updating Π with these equations, reconverging, and
iterating this process eventually leads to a mesh with error equally distributed. Guesses for the new
node states are always computed by interpolating points with the converged solution of the existing
mesh. After the error is equally distributed across each segment to within a user-specified tolerance,
the number of segments may be updated according to

mj+1 = round

[
mj

(
10ei
tol

) 1
o+1

+ 5

]
(23)

where o is the order of the collocation scheme. The entire process repeats until the error tolerances
are satisfied.

Higher-Order Method. An alternative approach is to use a higher-order method and control the
error by comparing to a high-order solution. Russell and Christiansen say that this approach is
inefficient because the additional expense of computing the higher order solution: “The approach
only seems reasonable if no other reliable estimates [for the error] are available” (p. 67). However
we consider it here because it is similar to what occurs with an nth order explicit Runge-Kutta
scheme and nth + 1 error control. The error for the ith segment can also be written

ei = ||x− pi| | (24)

In Equation 24, x is the (unknown) solution and pi is the polynomial solution computed with the
initial mesh over the interval (ti, ti+1). The higher-order approach also uses Equations 21 and
22, but ξi, instead, is approximated with a higher-order solution p∗

i . The average error for the ith

segment is

ei ≈ ēi =
1

∆ti

∫ ti+1

ti

||p∗
i − pi| |dt (25)

Setting Equation 25 to Equation 19 and solving for ξi yields

ξi ≈
ēi

C∆tn+1
i

on (ti, ti+1) , i = 1, . . . ,m (26)

Similar to de Boor’s method, Equation 26 gives ξi that is piecewise constant. The new times are
computed using Equations 21 and 22. Once the error is sufficiently equally distributed, the number
of segments is updated with Equation 23. As with de Boor’s scheme, the entire process repeats until
the error tolerances are met.

9

Control with Explicit Propogation (CEP). Another option for mesh refinement is to check the
solution with explicit propagation. If the error over a segment exceeds a user-specified tolerance,
the segment is split in two. After all segments have been checked, the NLP is re-solved and the
process iterates until a tolerance is met. It is better to start by first removing unnecessary segments
because it reduces the size of the NLP. Therefore we propose to add a first step before this task that
seeks to remove segments if the error from integrating over segment pairs is sufficiently small. The
algorithm runs as follows: After the collocation problem is initially solved, pairs of segments are
explicitly propagated and the difference between the solutions is computed. If the error is larger
than a user-specified tolerance, the segment boundaries are frozen for all subsequent iterations.
Otherwise the node point at the interface is removed, i.e., the two segments become one. After all
segment pairs have been examined, the NLP is re-solved. The process repeats until all possible
segment boundaries are removed, i.e., until the difference between the solution and the result from
explicit propagation is larger than some tolerance for all segments. Then the algorithm switches
to subdividing. For subdividing, individual segments are explicitly propagated and the difference
between the two solutions is computed. If the error is larger than a user-specified tolerance, the
segment is split in half, otherwise the segment is unaltered. The NLP is re-solved and segments are
once again compared with explicit propagation and subdivided as necessary. The process repeats
until the difference between the solution and the results from explicit propagation is below a user-
specified tolerance for all segments. As with de Boor’s scheme and the higher-order method, guesses
for the new node states are always computed by interpolating points with the converged solution of
the existing mesh.

PROTOTYPE SOFTWARE MCOLL

In this section we summarize the various collocation and mesh refinement strategies that were
chosen for implemenation in MColl. We also describe some of the features and capability of the
software. The section ends with some example problems solved with MColl.

Methods Chosen & Justification

We decided to avoid implementing even degree algorithms because they have the same number
of variables and constraints per segment as the same method but one dgree higher, rendering even
degree methods useless for numerical applications. A lower-degree method may be faster to con-
verge, but it will require many more segments to achieve the same numerical accuracy as a higher
degree method. Since the number of variables and constraints per segment increases at a rate of
n/2 and the order of accuracy increases by 2n, algorithms that utilize higher degree polynomials
will generally achieve the same accuracy more quickly than the lower degree methods. This rule
applies up to the point where the order of accuracy meets the number of digits required for double
precision. It is difficult to see the advantages of using methods with n > 9 with double precision
computations.

For the various test problems investigated, the simplified LGL method usually outperformed the
LG collocation method, even though more segments were required for the LGL method to achieve
the same accuracy. We attribute the better performance to the smaller problem size for the simplified
LGL method. Therefore, MColl utilizes Herman and Conway’s simplified LGL approach, with a
user-defined odd-degree polynomial with n = 3, 5, 7, 9. (For simplicity, the degree is assumed to
be the same across all segments.) The software defaults to n = 7 since, for the test problems we
investigated, we observed the best performance for polynomials of degree 7.

10

For mesh-refinement we found that the higher-order method was typically less efficient than both
de Boor and CEP. Explicitly integrating the EOMs for mesh refinement occurs only after solving
the collocation problem (not during iteration), therefore, collocation may be the preferrable method
for any iteratave scheme. For ballistic propagations of an initial state, controlling the error with an
explicit propagation scheme removes the advantage of using collocation. Compared to CEP, de Boor
mesh refinement is faster, and it ends with a solution where the error is equally distributed. However
we found that CEP is much more robust and usually requires fewer segments. Furthermore, in CEP
the error is controlled directly whereas for de Boor the error is only based on approximations.
Since CEP does not initially equally distribute the error, it could potentially require many iterations
(> 100) more than de Boor for subdividing an initally coarse mesh. This problem can be allieviated
with a hybrid de Boor-CEP method. CEP has an advantage of validating an MColl solution against
external, reliable software.

The options for mesh refinement are (i) no mesh refinement, (ii) de Boor, (iii) CEP, or (iv) hybrid
de Boor-CEP method. For CEP, the user may also indicate if segments should first be romed from
the mesh. The hybrid option starts with de Boor’s method for equally distributing the error, and then
switches to CEP once error across the segments is equal to a certain tolerance.

Description of Software

MColl requires an initial guess for the entire trajectory to exist as a trajectory object within
MONTE’s binary object archive (BOA). The guess may originate from propogating with MONTE’s
propogator DIVA (with or without a control law), or it can be constructed in an external software
(e.g., in MATLAB) and imported into MColl. Once an initial guess for the trajectory exists in the
BOA, MColl decomposes the trajectory into segments for collocation based on a user-defined intial
mesh.

Wrappers have been created for optimization with IPOPT and KNITRO. If the trajectory is bal-
listic (i.e., uncontrolled), MColl can compute a minimum-norm solution, or it can invoke IPOPT
or KNITRO without an objective. If there is control, then MColl also requires an initial guess in
the BOA for the control direction profile. Then, when MColl decomposes the trajectory into seg-
ments it concatenates to the design vector X (recall Equation 16) the control for each segment ui.
Additionally the unit magnitude constraint

||ui||2 = 1 (27)

is added to the constraint vector F for each segment (recall Equation 17). The control direction is
assumed to be fixed for a given segment.

The gravity force model is specified by the user and can be either point-mass, or MONTE full
body gravity fields. Solar radiation pressure (SRP) and drag can also be activated. User-defined
thruster(s) can be created with solar array and bus power models similar to those available in
MALTO and Mystic.

If the user specifies a low-thrust engine, the segment start massm0,i and end massm0,f are added
as variables to the design vector. A “throttle” constraint function si is introduced such that

0 ≤ si ≤ 1 (28)

where
si =

m0,i −mf,i

ṁmax,i∆ti
(29)

11

Then the thrust Ti and mass flow rate ṁi for a given segment are

Ti = siTmax,i (30)

ṁi = siṁmax,i (31)

The values Tmax,i and ṁmax,i are computed from (µ, τ) thrust-power curves (i.e., polynomial rep-
resentations of the thrust and mass-flow rate as a function of input power).

MColl can also be used in a solar sailing mode, where the sail model is created from a MONTE-
based spacecraft shape model—such as a flat plate—with user-determined characteristics for the
area and reflectivity properties. For solar sailing, the control direction ui defines the normal of the
spacecraft’s reflective surface. The user also inputs a maximum pitch angle αmax for pitching the
sail normal away from the sun direction r̂s. Then the constraints

r̂Ts ui ≥ cos(αmax) (32)

are enforced at every segment midpoint.

Additional constraints can also be specified at the boundaries, or along the path. Boundary con-
straints may be specified either at the beginning or end of the trajectory. The constraint can be
fixing a MONTE state coordinate to a particular value, or bounding it within a range, as indicated
by the user. Constraints for any MONTE computable coordinate can be introduced, including Carte-
sian coordinates in a particular frame and with respect to a user-specified central body, as well as
MONTE spherical and/or Keplerian coordinates. If the user desires to enforce a constaint that is
not available in MONTE, a user-defined custom constraint can be created. Constraints can also be
applied at a particular epoch along the trajectory, or across all segments (for example, such as a path
constraint on minimum radius from a particular body).

The objective function is set similarly to a constraint. It can be any MONTE computable quan-
tity, or it may be determined by evaluating a function supplied by the user. The deriviatives for the
constraints and objective are computed using MONTE’s built-in automatic differentiation capabil-
ity. Since non-adjacent segments are independent, all derivatives may be computed efficiently by
computing them on a per segment basis.

MColl also includes rudimentary support for solving “multi-leg” collocation problems consisting
of one or more interrelated sub-problems, i.e. legs. The multi-leg architecture is particularly useful
for problems involving time-varying engine parameters (duty cycle changes, forced coast/thrust
arcs), close flybys of gravitational bodies, and multi-spacecraft rendezvous. Initially, each sub-
problem is created independently with its own MONTE BOA, dyanmical model, engine/sail model,
control law, constraints, etc. Additional constraints can be imposed to enforce position, velocity,
and/or mass continuity between subsequent legs. A multi-leg objective is specified as in the single
leg case.

Once a solution is computed, an MColl utility propogates each segment with JPL’s DIVA pro-
pogator. Using the same error metric used in CEP, the utility verifies that the final state error for all
the segments is below a desired tolerance, thereby validating MColl’s final solution with DIVA.

Example Problems

Lissajous Orbit. In this example a ballistic L1 Lissajous orbit is computed in a full ephemeris
model, starting with an initial guess from the Earth-Moon Circular Restricted 3-Body Problem

12

(CR3BP). Lissajous orbits have been computed the full ephemeris model before with multiple
shooting or the two-level differential corrections scheme.46 In this example problem we pass to
both MColl and MONTE’s built-in two-level differential corrector the same initial guess from the
CR3BP. The two-level corrector converges in 5.9 seconds and MColl converges in 2.7 seconds on
the same computer. CEP was used to mesh refine the MColl trajectory, highlighting the important
point that even if an explicit propogator is used to control the error, collocation may still outperform
a differential corrector.

75000 70000 65000 60000 55000 50000 45000 40000
X (km)

15000

10000

5000

0

5000

10000

15000

Y
 (

km
)

(a) XY-Projection

65000 60000 55000 50000
X (km)

8000

6000

4000

2000

0

2000

4000

6000

8000

Z
 (

km
)

(b) XZ-Projection

Figure 2. High-Fidelity Earth-Moon Lissajous

Lyapunov-to-Lyapunov Low-Thrust Transfer. For this example problem, MColl is used to opti-
mize a low-thrust transfer trajectory from an L1 Lyapunov orbit to an L2 Lyapunov orbit in the
Earth-Moon CR3BP. The L1 and L2 orbits have a slightly different Jacobi constant value. Although
there is no ballistic connections between the unstable and stable manifolds of the orbits, the invariant
manifolds were used as an initial guess for this transfer. The example assumes a constant thrust of
10 mN and the mass-flow rate (independent from power, for this example) is ṁ = T/Ispg0, where
Isp = 2,000 sec. The initial spacecraft mass is 500 kg and the final optimal mass is 499.46 kg. The
total CPU time for this example problem is 21.3 seconds.

ARRM Earth-to-Asteroid Transfer. A slightly more complicated low-thrust example optimizes
an Earth-to-asteroid transfer for the ARRM trajectory. The example starts from a fixed six-state
near the Earth and rendezvous with the asteroid 2008 EV5. The total transfer time is 390 days. The
spacecraft uses 3 HERMeS high-efficiency thrusters operating at 90% duty cycle. Thrust and ṁ are
polynomial functions of input power where the coeffients of the polynomials are determined by the
perfomance of the HERMeS thrusters. The array power is an inverse-square model with a reference
power of 47 kW. The power diverted to the spacecraft bus is 500 W. The initial spacecraft mass is
9,945 kg and the optimal final mass is 8,423 kg. The same problem was optimized in JPL’s low-
thrust software Mystic and the same final mass was computed with a nearly idential thrust profile
presented in Figure 4(b). Both Mystic and MColl take approximately 25 seconds to optimize this
trajectory starting from a ballistic initial guess.

Solar Sail Solar System Escape. This problem assumes as spacecraft has been transported to
perihelion where a solar sail is deployed for optimal solar system escape. In MColl, solar sailing is

13

80000 60000 40000 20000 0 20000 40000 60000 80000
X (km)

60000

40000

20000

0

20000

40000

60000

Y
 (

km
)

(a) Low-Thrust Transfer

Jan-05-2015 Jan-19-2015 Feb-02-2015
Epoch (ET)

10

5

0

5

10

T
h
ru

st
 (

m
N

)

Tx
Ty
Tz
||T||

(b) Optimal Thrust Profile

Figure 3. Mass-Optimal Earth-Moon Lyapunov Transfer

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X [AU]

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Y
 [

A
U

]

Earth Orbit
2008 EV5 Orbit

(a) Rendezvous Trajectory

Aug-01-2022 Dec-01-2022 Apr-01-2023 Aug-01-2023
Epoch (ET)

1500

1000

500

0

500

1000

1500

2000

T
h
ru

st
 (

m
N

)

Tx
Ty
Tz
||T||

(b) Optimal Thrust Profile

Figure 4. Mass-Optimal ARRM Outbound Trajectory

accomplished via a solar radiation pressure model, where the pressure is determined by MONTE by
specifying a particular spacecraft shape model with specific reflective properties. For this problem,
the reflective properties correspond to an ideal sail where photons are perfectly reflected. The
spacecraft mass is 20 kg, and the total sail area is 2,500 m2. The objective function is maximize the
C3. As with the previous examples, the initial guess is ballistic starting from parabolic conditions at
perihelion. The compute time is 82 sec, and the final optimal C3 is 4,381 km2/sec2. The converged
trajectory is shown in Figure 5. (Note that the thrust profile is jagged because MColl assumes that
the pitch of the sail is inertially fixed for each segment.)

NEAScout Asteroid Rendezvous. MColl also has the capability of optimizing solar sail trajectries
with high-fidelity sail models. In this example we solve for asteroid rendezvous with the asteroid

14

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
X (AU)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
 (

A
U

)

(a) Escape Trajectory

Jan-02-2000 Jan-30-2000 Feb-27-2000 Mar-26-2000
Epoch (ET)

200

0

200

400

600

800

1000

1200

1400

1600

T
h
ru

st
 (

m
N

)

Tx
Ty
Tz
||T||

(b) Optimal Thrust Profile

Figure 5. Maximum-C3 Solar Sail Escape Trajectory

1991 VG, the target body of interest for the NEAScout mission. The NEAScout spacecraft mass is
assumed to by 14 kg. The total area for of the sail is 86 m2 and the diffuse and specular reflectivity
factors are κν = 9.7562e-4 and κµ = 0.4277, respectively. Furthermore, a 90% duty cycle is
imposed on the sail for operations margin. The sail normal cannot be pitched further than 50◦ away
from the Sun line. From MColl, the optimal time of flight is 795.5 days. The converged solution
is shown in Figure 6, including a plot of the angle between the sail normal and the Sun direction
(see Figure 6(c)). Small violations in the αmax around pitch angles of 50◦ are present because
Equation 32 is only enforced at the segment midpoint. The number of segments can be increased
for a smoother thrust profile if desired. This example problem took 27 minutes to converge.

CONCLUSION

In this paper we describe a prototype low-thrust software MColl that is being developed a JPL. We
detail the results of our investigation of collocations methods as well as our justification for selecting
the various algorithms we have chose to implement in MColl. To date, the software can be used to
computed ballistic trajectories, such as the L1 Lissajous example, as well as high-fidelity low-thrust
optimal trajectoies, e.g., the ARRM (SEP) and NEAScout (sail) transfers. The user can specify
their own trajectory constraints and/or objective functions for optimization with either IPOPT or
KNITRO. For the example problems presented in this paper, we have found the performance of
MColl to be comparable to other JLP low-thrust software tools Mystic and MALTO.

ACKNOWLEDGMENTS

The authors thank Juan Arrieta for creating the MONTE Python interface with IPOPT. The au-
thors also thank Robert Pritchett and Rolfe Power for testing MColl and excersizing the software
with the example problems presented in this paper.

This work was funded by NASA’s Advanced Multi-Mission Operations System (AMMOS). The
work described in this paper was performed at the Jet Propulsion Laboratory, California Institute

15

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X (AU)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Y
 (

A
U

)

Earth Orbit
1991 VG Orbit

(a) Rendezvous Trajectory

Dec-01-2018 Sep-01-2019 Jun-01-2020
Epoch (days)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

T
h
ru

st
 (

m
N

)

Tx
Ty
Tz
||T||

(b) Optimal Thrust Profile

Dec-01-2018 Sep-01-2019 Jun-01-2020
Epoch (days)

25

30

35

40

45

50

55

A
n
g
le

 s
a
il

n
o
rm

a
l
fr

o
m

 S
u
n
 (

d
e
g
)

(c) Angle Sail Normal from Sun line

Figure 6. NEAScout Trajectory

of Technology, under contract with the National Aeronautics and Space Administration. Copyright
2017 California Institute of Technology. Government sponsorship acknowledged.

REFERENCES

[1] R. Sunseri, H.-C. Wu, J. Evans, T. Drain, and M. Guevara, “Mission Analysis, Operations, and Naviga-
tion Tollkit Environment (MONTE) Version 040,” NASA Tech Briefs, Vol. 36, No. 9, 2012.

[2] U. Ascher, J. Christiansen, and R. Russell, “COLSYS-A Collocation Code for Boundary-Value Prob-
lems,” Codes for Boundary Value Problems in Ordinary Differential Equations (G. d. Pillo and
M. Roma, eds.), Springer-Verlag, 2006.

[3] U. Ascher and R. Spiteri, “Collocation Software for Boundary Value Differential-Algebraic Equations,”
SIAM Journal on Scientific Computing, Vol. 15, 1994, pp. 938–952.

[4] E. Doedel, “AUTO, a Program for the Automatic Bifurcation Analysis of Autonomous Systems,” Con-
gressus Numerantium, Vol. 30, 1981, pp. 265–384.

16

[5] E. Doedel and B. Oldeman, “AUTO-07P: Continuation and Bifurcation Software for Ordinary Differ-
ential Equations,” Concordia University, Montreal, Canada, Jan. 2012.

[6] C. Hargraves and S. Paris, “Optimal Trajectories by Implicit Simulation (OTIS),” Air Force Wright
Aeronautical Lab., AFWAL-TR-88-3057, Wright Patterson AFB, OH, Nov. 1988.

[7] NASA Glenn Research Center, “OTIS: Optimal Trajectories by Implicit Simulation,”
http://otis.grc.nasa.gov/request.html. [Online; accessed Sep. 25, 2015].

[8] I. M. Ross, “A Beginner’s Guide to DIDO (Ver. 7.3), A MATLAB Application Package for Solving
Optimal Control Problems,” Elissar, LLC, 2007.

[9] O. von Stryk, “User’s Guide for DIRCOL (Version 2.1): A Direct Collocation Method for the Nu-
merical Solution of Optimal Control Problems,” Fachgebiet Simulation und Systemoptimierung (SIM),
Technische Universitat Darmstadt, 2000.

[10] P. Rutquist and M. Edvall, “PROPT - Matlab Optimal Control Software,” 1260 SE Bishop Blvd Ste E,
Pullman, WA, 2008.

[11] M. Patterson and A. Rao, “GPOPS - II: A MATLAB Software for Solving Multiple-Phase Optimal
Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear
Programming,” ACM Transactions on Mathematical Software, Vol. 39, No. 3, 2013, pp. 1843–1851.

[12] F. Krogh, “DIVA/SIVA, Chapter 14.1 of MATH77, Release 4.0,” Jet Propulsion Laboratory, California
Institute of Technology,Pasadena, CA, JPL D-1341, Rev. C, May 1992.

[13] A. Wächter and L. Biegler, “On the Implementation of a Primal-Dual Interior Point Filter Line Search
Algorithm for Large-Scale Nonlinear Programming,” Mathematical Programming, Vol. 106, No. 1,
pp. 25–57.

[14] R. Byrd, J. Nocedal, and R. Waltz, “KNITRO: An Integrated Package for Nonlinear Optimization,”
Large-Scale Nonlinear Optimization, Vol. 76, Berlin: Springer-Verlag, 1979.

[15] J. Sims, P. Finlayson, M. Vavrina, and T. Kowalkowski, “Implementation of aLow-Thrust Trajectory
Optimization Algorithm for Preliminary Design,” AIAA/AAS Astrodynamics Specialist Conference, Pa-
per No. AIAA-2006-6746, Keystone, CO, Aug. 21-24 2006.

[16] G. Whiffen. “Static/Dynamic Control for Optimizing a Useful Objective,” United States Patent No.
6,496,741. Issued Dec. 17, 2002, Filed Mar. 25, 1999.

[17] G. Whiffen, “Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-
Fidelity, Low-Thrust Trajectory Design,” AIAA/AAS Astrodynamics Specialist Conference, Paper No.
AIAA 2006-6741, Keystone, CO, Aug. 21-24 2006.

[18] C. de Boor, The Method of Projections as Applied to the Numerical Solution of Two Point Boundary
Value Problems using Cubic Splines. PhD thesis, University of Michigan, Ann Arbor, Michigan, 1966.

[19] R. Russell and L. Shampine, “A Collocation Method for Boundary Value Problems,” Numerische Math-
ematik, Vol. 19, No. 3, 1972, pp. 1–28.

[20] R. Weiss, “The Application of Implicit Runge-Kutta and Collocation Methods to Boundary Value Prob-
lems,” Mathematics of Computation, Vol. 28, No. 126, 1974, pp. 449–464.

[21] C. Hargraves and S. Paris, “Direct Trajectory Optimization Using Nonlinear Programming and Collo-
cation,” J. Guid. Control Dyn., Vol. 10, No. 4, 1987, pp. 338–342.

[22] See http://www.techbriefs.com/component/content/article/5625, 2009. [Online; accessed Sep. 7, 2017].
[23] J. Betts and P. Huffman, “Application of Sparse Nonlinear Programming to Trajectory Optimization,”

J. Guid. Control Dyn., Vol. 15, No. 1, 1992, pp. 198–206.
[24] J. Betts and P. Huffman, “Mesh Refinement in Direct Transcription Methods for Optimal Control,”

Optimal Control Applications AMPERSAND Methods, Vol. 19, 1998, pp. 1–21.
[25] J. Betts and P. Huffman, “Sparse Optimal Control Software SOCS,” The Boeing Co., Rept. MEA-LR-

085, Seattle, WA, Jul. 1997.
[26] P. Enright and B. Conway, “Discrete Approximations to Optimal Trajectories Using Direct Transcrip-

tion and Nonlinear Programming,” J. Guid. Control Dyn., Vol. 15, No. 4, 1992, pp. 994–1002.
[27] A. Herman, Improved Collocation Methods with Applications to Direct Trajectory Optimization. PhD

thesis, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, Sep. 1995.

[28] A. Herman and B. Conway, “Direct Optimization Using Collocation Based on High-Order Gauss-
Lobatto Quadrature Rules,” J. Guid. Control Dyn., Vol. 19, No. 3, 1996, pp. 592–599.

[29] P. Williams, “Hermite-Legendre-Gauss-Lobatto Direct Transcription in Trajectory Optimization,” J.
Guid. Control Dyn., Vol. 32, No. 4, 2009, pp. 1392–1395.

[30] M. Canon, C. Cullum, and E. Polak, Theory of Optimal Control and Mathematical Programming. New
York: McGraw-Hill, 1970.

17

[31] F. Fahroo and I. Ross, “Trajectory Optimization by Indirect Spectral Collocation Methods,” Proceedings
of the AIAA/AAS Astrodynamics Conference, No. AIAA-2000-4028, Denver, CO, August 2000.

[32] F. Fahroo and I. Ross, “Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,” J.
Guid. Control Dyn., Vol. 25, No. 1, 2002, pp. 160–166.

[33] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, and G. Huntington, “A Unified Framework for the
Numerical Solution of Optimal Control Problems using Pseudospectral Methods,” Atomatica, Vol. 46,
2010, pp. 1843–1851.

[34] J. Betts, “Survey of Numerical Methods for Trajectory Optimization,” J. Guid. Control Dyn., Vol. 21,
No. 2, 1998, pp. 193–207.

[35] B. Conway, “A Survey of Methods Available for the Numerical Optimization of Continuous Dynamical
Systems,” Journal of Optimization Theory and Applications, Vol. 52, No. 2, 2012, pp. 271–306.

[36] F. Topputo and C. Zhang, “Survey of Direct Transcription for Low-Thrust Space Trajectory Optimiza-
tion and Applications,” Abstract and Applied Analysis, Vol. 2014, No. Article ID 851720, 2014.

[37] J. Betts, Practical Methods for Optimal Control using Nonlinear Programming. Philadelphia: Society
for Industrial and Applied Mathematics, 2 ed., 2010.

[38] B. Conway, Spacecraft Trajectory Optimization. Cambridge: Cambridge University Press, 2010.
[39] For example, for LGL nodes, see Greg von Winckel’s MATLAB code lglnodes.m,

http://www.mathworks.com/matlabcentral/fileexchange/4775-legende-gauss-lobatto-nodes-and-
weights/content/lglnodes.m, 2004. [Online; accessed Sep. 25, 2015].

[40] R. Russell and J. Christiansen, “Adaptive Mesh Selection Strategies for Solving Boundary Value Prob-
lems,” SIAM J. Numer. Anal., Vol. 58, No. 1, 1978, pp. 353–370.

[41] C. Darby, W. Hager, and A. Rao, “An hp-Adaptive Pseudospectral Method for Solving Optimal Control
Problems,” Optim. Control Appl. Meth, Vol. 32, No. 4, 2011, pp. 476–502.

[42] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics. Cambridge University Press, 2004.
[43] E. Dickmanns, “Efficient Convergence and Mesh Refinement Strategies for Solving General Ordinary

Two-Point Boundary Value Problems with Collocated Hermite Approximation,” 2nd IFAC Workshop
on Optimization, Oberpfaff-Enhofen, FRG, Sept. 1980.

[44] C. de Boor, “Good Approximation by Splines with Variable Knots. II,” Conference on the Numerical
Solution of Differential Equations, Lecture Notes in Mathematics, Vol. 363, New York: Springer, 1973.

[45] M. Ozimek, D. Grebow, and K. Howell, “A Collocation Approach for Computing Solar Sail Lunar
Pole-Sitter Orbits,” Open Aerospace Eng. J., Vol. 3, No. 1, 2010, pp. 65–75.

[46] K. Howell and H. Pernicka, “Numerical Determination of Lissajous Trajectories in the Restricted Three-
Body Problem,” Celestial Mechanics, Vol. 41, 1988, pp. 107–124.

18

	Introduction
	Collocation
	Collocation Schemes
	A Generalized Algorithm

	Mesh Refinement
	Mesh Refinement Strategies
	Method from de Boor.
	Higher-Order Method.
	Control with Explicit Propogation (CEP).

	Prototype Software MColl
	Methods Chosen & Justification
	Description of Software
	Example Problems
	Lissajous Orbit.
	Lyapunov-to-Lyapunov Low-Thrust Transfer.
	ARRM Earth-to-Asteroid Transfer.
	Solar Sail Solar System Escape.
	NEAScout Asteroid Rendezvous.

	Conclusion

